
Update to the Rescue

By Robert Virgile

Copyright 2018 Robert Virgile

SAS is a registered trademark of SAS Institute Inc.

Update to the Rescue

Bob Virgile has been teaching and consulting in
SAS for over 35 years. He formerly composed
the problem-solving contests for regional and
international SAS conferences, wrote and
presented numerous SAS papers, and wrote
three books for SAS Institute. He is the only
person in the history of NESUG to be barred
from the SAS Bowl competition due to superior
SAS knowledge.

Update Basics …

data combined;
update master changes;
by id;

run;

Update combines exactly two SAS data sets.

Both data sets must be sorted.

There can be mismatches.

The first data set contains no more than one observation per ID.

The second data set can contain many observations per ID.

Names of variables and data sets are up to you.

Update Basics …

data combined;
update master changes;
by id;

run;

The final COMBINED data set will contain just one observation per ID.

For each ID:

 Begin with the data values found in MASTER.

 For each observation in CHANGES, use nonmissing values only (replacing any
previous values).

 Output a single observation per ID, once all the changes have been applied.

Update Basics …

MASTER CHANGES

ID Height Weight ID Height Weight
Alice . 130 Alice 68 .
Bob 72 180 Alice . 132
Carol 66 125 Carol . 120

Current values for

ID Height Weight

Output data set COMBINED

ID Height Weight

Alice . 130
Alice 68 130
Alice 68 132
Bob 72 180
Carol 66 125
Carol 66 120

Alice 68 132
Bob 72 180
Carol 66 120

Update Basics …

That’s nice if you need it.

But who needs it?

Let’s consider some situations that require a bit of creativity.

Case 1: Replace Missings Only

The scenario:

 Two data sets contain just a single observation per ID.

 There might be some mismatches.

 The CHANGES data set should replace only the missing values in MASTER.
Nonmissing values in MASTER should remain untouched.

Case 1: Replace Missings Only

MASTER CHANGES

ID Height Weight ID Height Weight
Alice . 130 Alice 68 .
Bob 72 180 Bob . 132
Carol 66 125 Carol . 120

The intent is to replace only
missing values in the MASTER
data set.

Output data set COMBINED

ID Height Weight

Alice 68 130
Bob 72 180
Carol 66 125

Case 1: Replace missings only

MERGE fails. It replaces all
values, not just the
nonmissing values.

data combined;
merge master changes;
by ID;

run;

ID Height Weight
Alice 68 .
Bob . 132
Carol . 120

UPDATE fails. It can replace
nonmissing values, not just
missing values.

data combined;
update master changes;
by ID;

run;

ID Height Weight
Alice 68 130
Bob 72 132
Carol 66 120

Case 1: Replace missings only

Programming around the problem is cumbersome:

data combined;
merge master changes (rename=(height=height2 weight=weight2));
by ID;
if height = . then height = height2;
if weight = . then weight = weight2;
drop height2 weight2;

run;

What if there were 100 variables instead of two?

Case 1: Replace missings only

What would work?

Switch the order of the data sets within the UPDATE statement.

data combined;
update changes master;
by ID;

run;

CHANGES MASTER

ID Height Weight ID Height Weight
Alice 68 . Alice . 130
Bob . 132 Bob 72 180
Carol . 120 Carol 66 125

Case 2: Collapsing Rows

A single data set contains data
spread across multiple
observations:

ID Height Weight

Alice 68 .
Alice . 132
Bob . 180
Bob 70 .
Carol 62 .
Carol . 140

A successful “collapse”:

ID Height Weight

Alice 68 132
Bob 70 180
Carol 62 140

Case 2: Collapsing Rows

Incoming data:

ID Height Weight

Alice 68 .
Alice . 132
Bob . 180
Bob 70 .
Carol 62 .
Carol . 140

data collapsed;
set my_data;
by ID;
if first.ID then do;

replace_height = height;
replace_weight = weight;

end;
else do;

if height > . then replace_height = height;
if weight > . then replace_weight = weight;

end;
retain replace_height replace_weight;
if last.ID;
drop height weight;
rename replace_height = height
replace_weight = weight;

run;

Case 2: Collapsing Rows

Keep in mind:

 The program is complex enough with only a few variables. What if there were
20 variables spread out in similar fashion?

Features that resemble UPDATE:

 Process nonmissing values and ignore missing values

 Generate just one observation per ID

Strange, and nothing like UPDATE:

 There’s only one data set.

Case 2: Collapsing Rows

Is the solution simple? Incoming data:

data collapsed;
update my_data (obs=0) my_data;
by ID;

run;

You don’t even need to know the
names of the variables! For each ID:

 Take nothing from the first data set, but at least there is a first data set.
 One at a time, take observations for an ID from the second data set. Use the

non-missing values.
 When all observations for that ID have been processed, output the result.

ID Height Weight

Alice 68 .
Alice . 132
Bob . 180
Bob 70 .
Carol 62 .
Carol . 140

Case 3: Combining Multiple Sources

Three data sets (GOOD, BETTER, and BEST) all contain the same set of variables.

The intent:

 Generate a single observation per ID.

 Use all the nonmissing values in BEST.

 For data values that are missing from BEST, use nonmissing values from
BETTER.

 For data values that are still missing, use nonmissing values from GOOD.

Case 3: Combining Multiple Sources

The incoming data sets all contain ID, HEIGHT, and WEIGHT:

GOOD BETTER BEST

Amy 60 140 Amy 61 135 Amy . 150
Bob 64 155 Bob 65 160 Bob . 150
Dan 70 198 Dan 68 .
Eve 60 140 Eve 61 135 Eve . 142
Eve . 135

Irv 61 135 Irv . 150
Joe 72 220 Joe 71 . Joe 73 .
Lou 63 150 Lou . 160

Lou . 165

The intended result: use the values in red, for each ID.

Case 3: Combining Multiple Sources

The set-up (after sorting each data set by ID):

data all3;
set good better best;
by ID;

run;

The order is important, putting the most “valuable” observations at the end.

Then following the same logic as in Case 2:

data final;
update all3 (obs=0) all3;
by ID;

run;

Case 4: LOCF

LOCF is a method of replacing missing values.

“Last Observation Carried Forward”

Before

ID RecNo Amount

Amy 1 1234
Amy 2 .
Amy 3 2468
Bob 1 .
Bob 2 3456
Bob 3 .
Bob 4 4567
Bob 5 .

After

ID RecNo Amount

Amy 1 1234
Amy 2 1234
Amy 3 2468
Bob 1 .
Bob 2 3456
Bob 3 3456
Bob 4 4567
Bob 5 4567

Case 4: LOCF

Without UPDATE:

data after;
set before;
by ID;
if first.ID then replacement = amount;
else if amount > . then replacement = amount;
else amount = replacement;
retain replacement;
drop replacement;

run;

Before

ID RecNo Amount

Amy 1 1234
Amy 2 .
Amy 3 2468
Bob 1 .
Bob 2 3456
Bob 3 .
Bob 4 4567
Bob 5 .

Case 4: LOCF

This program has advantages and
disadvantages:

data after;
update before (obs=0) before;
by ID;

run;

UPDATE ignores missing
values, and holds onto
the last-encountered
non-missing value.

But UPDATE outputs just
one observation per ID.

ID RecNo Amount ID RecNo Amount

Amy 1 1234
Amy 2 .
Amy 3 2468 Amy 3 2468
Bob 1 .
Bob 2 3456
Bob 3 .
Bob 4 4567
Bob 5 . Bob 5 4567

Case 4: LOCF

ID RecNo Amount ID RecNo Amount

Amy 1 1234 Amy 1 1234
Amy 2 . Amy 2 1234
Amy 3 2468 Amy 3 2468
Bob 1 . Bob 1 .
Bob 2 3456 Bob 2 3456
Bob 3 . Bob 3 3456
Bob 4 4567 Bob 4 4567
Bob 5 . Bob 5 4567

So what do we do?

data after;
update before (obs=0) before;
by ID;
output;

run;

