

1

Paper 056-2009
Using IN:() to Code Character Comparisons with

Criteria Having Different Lengths
Paul Grant, SAS Institute, Inc.

Abstract
Character comparisons with criteria having different lengths are easier to describe than to code. For example, it’s easy to say “Select the records of customers whose last names begin with 'Mc' or with 'Mac'” but more difficult to
code it. This paper will show you how to use the IN operator and the colon (:) operator modifier to code these types
of comparisons simply and clearly in SAS® DATA and PROC steps.

A Sample Comparison
To illustrate this discussion, suppose we have to select the records for all the customers located in ZIP codes which begin with:

 ‘010’ ‘011’ ‘012’ ‘0130’ ‘0131’ ‘0133’ ‘0134’ ‘0138’

The difficulty is that we want to select some records based on the first three bytes of the ZIP code, others based on the first four bytes.

Some Cluttered Solutions
One frequently used way of selecting these records is to use the SUBSTR (Substring) function to truncate the values of the variable:

 Data Select ; set Customer ; if substr(ZIP_code, 1, 3) = ‘010’ or substr(ZIP_code, 1, 3) = ‘011’ or substr(ZIP_code, 1, 3) = ‘012’ or substr(ZIP_code, 1, 4) = ‘0130’ or substr(ZIP_code, 1, 4) = ‘0131’ or substr(ZIP_code, 1, 4) = ‘0133’ or substr(ZIP_code, 1, 4) = ‘0134’ or substr(ZIP_code, 1, 4) = ‘0138’ ;

This approach certainly does the job but the code is verbose and cluttered (and probably inefficient as well). This condition only worsens as the complexity of the comparison increases. We could improve this code by executing the SUBSTR function calls before the comparison statement and assigning the results to ‘throw-away’ variables. We could also replace the ‘=’ operator with the IN operator:

2

 Data Select ; set Customer ; zip_3 = substr(ZIP_code, 1, 3) ; zip_4 = substr(ZIP_code, 1, 4) ; if Zip_3 in(‘010’, ‘011’, ‘012’) or Zip_4 in(‘0130’, ‘0131’, ‘0133’, ‘0134, ‘0138’) ; drop Zip_3 Zip_4 ;

Taking this a step further, we could replace the SUBSTR functions with a LENGTH statement (a non-executable statement) and simple assignment statements:

 Data Select ; set Customer ; length Zip_3 $ 3 Zip_4 $ 4 ; zip_3 = ZIP_code ; zip_4 = ZIP_code ; if Zip_3 in(‘010’, … code continues…

The LENGTH statement creates two variables, 3 and 4 bytes long respectively. The assignment statements fill these variables with the first 3 and 4 bytes of ZIP_code. In other words, the SUBSTR function is redundant if you want to work with the first few bytes of a character value.

Two Versatile Techniques
But there’s a much more elegant way to code this type of comparison. It employs two very versatile techniques available in the SAS System. The first technique is to use the colon (:) operator modifier to truncate the lengths of the longer values. This eliminates the need for the SUBSTR function and/or creating additional variables. In the SAS System, character values must be adjusted to the same length before they can be compared. When SAS compares character values without the colon (:) operator modifier, it pads the shorter value with blanks to the length of the longer value before making the comparison. When it compares character values with the colon (:) operator modifier, it truncates the longer value to the length of the shorter value. Thus:

 ‘010’ = ZIP_code compares as ‘010bb’ = ‘01034’ while ‘010’ =: ZIP_code compares as ‘010’ = ‘010’

3

The second technique is the undocumented ability of the IN operator to accept character constants of different lengths. For example, the statement:
 if language in(‘SAS’, ‘C’) ;

will be true for the values ‘SAS’ and ‘C’ but not for the values ‘COBOL’ or ‘PL/1.’ This capability is not mentioned in the SAS Language Reference Manual and all the examples in that manual have lists of character constants which have the same length.

An Elegant Solution
Now, let’s apply these two techniques to the task at hand. In the following code, the IN operator contains a list of the various length ZIP_code prefixes we want to select and the colon (:) operator modifier truncates the values of ZIP_code to the appropriate lengths. Notice how similar this statement is to the simple list of ZIP code prefixes we used at the beginning of the paper.

 Data Select ; set Customer ; if ZIP_code in:(‘010’, ‘011’, ‘012’, ‘0130’, ‘0131’, ‘0133’, ‘0134’, ‘0138’) ;

This simple and uncluttered code makes it easy for persons with limited knowledge of SAS to read the program and validate that it meets specifications. This is important! These techniques are also quite versatile. For instance, since the first four ZIP_code prefixes we want to select form a continuous range, we can also code this IF statement as:

 Data Select ; set Customer ; if ‘010’ <=: ZIP_code <=: ‘0131’ or ZIP_code in:(‘0133’, ‘0134’, ‘0138’) ;

The important thing to notice in this example is that the character constants used to specify the range are of different lengths. The first is 3 bytes long; the other, 4 bytes long.

Applicability
This technique works only for character comparisons in DATA and PROC step code. It does not work for numeric comparisons. It does not work in PROC SQL code. There you would use one of the PROC SQL truncated string

4

comparison operators such as EQT, GTT, GET, LTT and LET. For example, the ZIP code example would look like this in PROC SQL:
 Proc sql ; Select * from … where zip_code eqt '010' or zip_code eqt '011' or zip_code eqt '012' or zip_code eqt '0130' or zip_code eqt '0133' or zip_code eqt '0134' or zip_code eqt '0138' ; quit ;

Conclusion
Using the IN operator with a list of character constants which vary in length and using the colon (:) operator modifier to truncate values being compared are two techniques which can greatly simplify the code you use to perform character comparisons involving criteria with different lengths. I’ve found them handy in dealing with ZIP codes, names, clinical coding schemes, and a variety of other classification values. Contact Information
I’m interested in your comments and suggestions on the techniques described in this paper. You can contact me at: Paul Grant SAS Institute, retired Boston Regional Office sasphg@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

