11/1/2018

A Brief Introduction to DS2

By Mark Jordan

§sas
il Mastering the SAS'
Email: Mark.Jordan@sas.com gsgrr'j:gcegm
Twitter: @SASJedi Advanced Data Wranglng Tochmiques
. Blog: http://sasjedi.tips
Author Info: http://support.sas.com/jordan

Objectives

Describe the DS2 programming language.

Identify when it is most appropriate to use the DS2 language.
Compare the DS2 DATA program to Base SAS DATA step execution.
« Understand basic DS2 Syntax

+ Explain DS2 variable declaration and its effect on variable scope.

« Name three DS2 system methods and the conditions under which they execute.
- Parallel Processing in DS2
+ Describe the similarities and differences between DS2 DATA and THREAD programs
+ Convert a DS2 DATA program to a DS2 thread.
+ Execute DS2 threads from a DS2 DATA program

§sas

11/1/2018

What Is DS2°?

DS2 is a new SAS programming language.
+ Included with Base SAS with DATA step-like syntax.

« Implemented in Base SAS as the DS2 procedure.

« It provides syntax for advanced data manipulation techniques.

Base SAS DATA Step

DS2 DATA program

data null ; proc ds2;
Text='Hello, World!''; data null ;
put Text=; method init () ;
run; Text='Hello, World!';
put Text=;
end;
enddata;
run;,
quit;
5as
What's Different About DS2?
DS2 natively supports ANSI SQL data types for precise data manipulation.
Examples:
Data Type Examples
Fractional Numerics DECIMAL, DOUBLE, FLOAT, REAL
Integer Numerics BIGINT, INTEGER, SMALLINT, TINYINT
Date and Time DATE, TIME, TIMESTAMP
Character CHAR, NCHAR, VARCHAR, NVARCHAR
SAS numeric variables are processed as DOUBLE.
SAS character variables are processed as CHAR.
9sas

11/1/2018

What's Different About DS2?

« DS2 can define and directly manipulate many ANSI data types.

 Types that are available for storage depend on the destination.

CAS SPDE/SPDS\

=
=
=i

B | ==
Gsas DS2 @ —20

Teradata Greenplum Hadoop

(0
(@

Gsas

What's Different About DS2?

DS2 improves the extensibility and reusability of code through the use of
methods and packages.

Package
Method A
...method code...
Method B
...method code...

Methods and packages can be predefined or user-defined.

Gsas

11/1/2018

What's Different About DS27?

DS2 was designed from the ground up to mitigate the toughest processing
bottlenecks in modern data processing environments:

+ A process where data is delivered more quickly than computations can be

completed is CPU bound —
p 0 20 e)
P = a@]ﬁ?ﬁ:’

+ A process where computations can be completed faster than the next row
of data can be delivered is /O bound

2o o
i i,
a. 4——4—.—_'_, F

@@O

Gsas

Processing Terminology

Threading
+ Threaded application processing mitigates CPU-bound processes.

« Computations are conducted on multiple data records in parallel.

+ 1/0 can proceed more smoothly. f N
RN
If the SAS log reports real (elapsed) time about equal l
to CPU time, the process is likely CPU bound. %
Threading DS2 on the SAS platform can reduce the —
elapsed time required to execute these programs. t /j
)

Gsas

11/1/2018

What's Different About DS27?

« The Base SAS DATA step is single threaded.
« DS2 can execute multi-threaded in Base SAS providing relief for CPU bound

processes.
f §sas Gsas N
DS2 DS2 DS2 DSZ
ot ot o ¢ ? *3‘" tg"

T—i Single read threads! %
+— What if my processis —=

— I/O bound? —
N— N—

\ SAS Data / \ SAS Data j
_ o ° ~)
§sas
What's Different About DS2?
With the SAS In-Database Code Accelerator, DS2 threads can be executed in
parallel on Massively Parallel Processing (MPP) RDBMS hardware:
Gsas // \\
f \\ DS2 DS2 DS2 DS2
Taking the code to the data instead of L
bring the data to the code dramatically . : ‘ t y t ¢
reduces network data movement while I I I I
leveraging the MPP capabilities and P R Rt s Iy
threaded I/O of the RDBMS platform. % gg%
SAS Data J __RDBMS __/
\ o/
§sas

11/1/2018

What's Different About DS2?

CAS MPP Server
> Gsas w (% % Controller
=5 J 23 ==
l DS2 DS2 Dsz
_Q"‘ - _Q":_ - —
Or with SAS Viya®, DS2 Worker 1 Worker 2 Worker n
programs execute natively in Data Sources FastETL

the Cloud Analytic Services
(CAS) MPP server operating on

[1
Natlve via Data Connector
Event
CASHOAT (HaDOOP] [HANA
[Greenplum] [Oracle]
(Teradata) ((oDBC
U SAS7BDAT ’ LSAS]}

(others) (saLserver] ((others)

memory-resident data tables.

Gsas

How Are DS2 Programs Created?

DS2 programs are written and executed in Base
SAS using the DS2 procedure (PROC DS2).

DS2 programs can also be executed in SAS® Viya™
on CAS from

a SAS 9 client using PROC DS2 code p
Python, Lua, Java, R, etc. using CAS actions

§sas

11/1/2018

When Should | Use DS27?

DS2 uses a special threaded driver to access data. Drivers are available
for the following data sources:

+ Amazon Redshift « MS SQL Server SAS data sets

« Aster - MYSQL « SASHDAT files

« CAS - Netezza « SPD Engine

- DB2 (UNIX and PC) « Oracle - SPD Server

« Pivotal Greenplum PostgreSQL - Teradata

« Hadoop (Hive and HDMD) - SAP (read only) - Vertica

« Impala - SAP HANA « ODBC-compliant
« Memory Data Store (MDS) « SAPIQ databases

Drivers for SAS data are included with Base SAS
Drivers for 3™ party data are included with the SAS/ACCESS Interface

Gsas

When to Use DS27?

DS2 programs are best suited for applications that do the following:
+ are computationally complex (threaded processing in Base SAS)

+ can execute in massively parallel processing (MPP) platforms
« CAS
+ With the SAS In-Database Code Accelerator: Teradata, Hadoop and Greenplum

(D

« require the precision that the DS2 data types offer

- leverage the convenient reusability of DS2 methods and packages

Gsas

11/1/2018

Basic DS2 Syntax

« DS2 includes syntax for three types of programs:

+ package programs
+ thread programs
« DATA programs

« PROC DS2 uses RUN-group
processing.

Packages are the objects of the DS2
programming language. Packages and

proc ds2;
package work.pgk;

<more program statements>
endpackage;
run;
thread work.thread;

<more program statements>
endthread;
run;
data null ;

<more program statements>
enddata;

Object Oriented Programming with DS2 run;
are not covered in this presentation. quit;
9sas
Basic DS2 Syntax
Methods
- Methods are named, executable blocks of code.
+ The METHOD statement names the method.
+ The END statement terminates the method.
- All executable code must be encapsulated in a method block.
proc ds2;
data null ;
method init() ;
Text='Hello, World!';
put Text=;
end;
enddata; ds2_do1
run; B
quits 6sas,

11/1/2018

DS2 DATA Programs

DATA programs are analogous to traditional SAS DATA step
+ Enforce a more structured programming syntax
+ Require all executable code to be included in a method definition
+ Caninclude variables global to the DATA program (and in the PDV) or
local to a method (not in the PDV)
+ Require at least explicitly written system method

§sas

DS2 DATA Program Structure

« DATA program block structure

Local variable declaration

Global declarative statements

data orion.mythread;
dcl double gtrl-gtr4;
vararry double contrib[4] gqtrl-qgqtr4;
method run() ;
dcl integer i; =
set orion.employee donations; — Data Program
Method Definition do i=1 to dim(contrib) ;}

Iterative

put contribl[i]=; DO loop

end;
end;
enddata;
run; =

All executable statements must be RUN statement causes execution

within a METHOD block

11/1/2018

DS2 Packages

DS2 packages are collections of methods and variables stored in SAS libraries.
« Simplify re-using code in DS2 DATA and Thread programs.
+ Predefined packages ship with SAS to extend DS2 capabilities.
- User-defined packages enable easy, secure sharing of proprietary algorithms.
- Packages enable object-oriented programming for the DS2 language
+ Can accept parameters when instantiated
« Can include user-defined constructor and destructor methods

+ Global variables in a package are private to the package instance and do not affect
the PDV of the DATA program in which they are used

§sas

DS2 PACKAGE Program Structure

« PACKAGE program block structure

Local variable declarations

Global variable declarations
(private to the instance)

(private to the method)

package orion.mymethods;
—dcl integer PkgVarl;
method c2f (double Tc) returns double;
dcl integer LocVarl; -
return ((Tc*9/5)+32) ;
Methods end; (/5)) — Package
method f2c(double Tf) returns double;
return ((T£-32) *9/5) ;
end;
endpackage;
run;

§sas

10

11/1/2018

DS2 Thread Programs

« Threads are programs stored in SAS libraries and used for parallel
processing in DS2

« Similar to DATA programs in that they

+ Enforce a more structured programming syntax

+ Require all executable code to be included in a method definition

+ Require at least explicitly written system method

+ Global variables appear in the PDV of the DATA program in which they are used
« Similar to DS2 packages in that they

+ can be re-used when stored in permanent SAS libraries.

+ can contain user-defined methods.

+ can accept parameters

§sas

DS2 Thread Program Structure

« THREAD program block structure

Global declarative statements

Local variable declaration

thread orion.mythread;
dcl double gtrl-gqtr4;
vararry double contrib[4] gtrl-qtr4;
method run() ;
dcl integer i; _
set orion.employee donations; —
Method Definition do i=1 to dim(contrib); : Thread Program
. . Iterative
put contrib[i]=; :} DO loop
end;
end;
endthread;

run; =
RUN statement causes execution

§sas

11

11/1/2018

Basic DS2 Syntax

data null ;
method init();
dcl varchar (20) Text;
Text='**> Starting';
put Text;
end;
method run() ;
set orion.banks;
put _all ;
end;
method term() ;
dcl char(1l) Text;
Text='**> All done!';
put Text;
end;
enddata;
run;

System methods execute automatically.
« INIT() — once at start

+ RUN() — once for every row

+ TERM() — once at termination

The data set orion.banks has
three observations. The RUN
method executes three times.

Only the RUN method includes
an implicit OUTPUT statement.

ds2_do2

Gsas

Basic DS2 Syntax

proc ds2;
data null ;
method init();
dcl varchar (20) Text;
Text='**> Starting';
put Text;
end;
method run();
set orion.banks;
put _all ;
end;
method term() ;
dcl char(1l) Text;
Text='**> All done!';
put Text;
end;
enddata;
run;

quit;

System methods
- execute automatically

 cannot be explicitly called

DS2 DATA programs must contain
user-written code for at least one
system method.

ds2_do2

Gsas

12

11/1/2018

Basic DS2 Syntax

proc ds2;
data null ;
method init[j;

dcl varchar (20) Text;

System methods

+ execute automatically

Text='**> Starting'; - cannot be explicitly called

put Text;
end;

method run;

set orion.banks;

put _all ;
end;

method termgg;
dcl char (11) Text;

Text='**> All done!';

- do not accept arguments.

put Text;
end;
enddata; ds2_d02
run;
it;
qui G§sas
Basic DS2 Syntax
User-defined methods have the following features:
* can accept arguments
proc ds2;
data null ;
method[c2f(doub1e Tc)]returns double;
/* Celsius to Fahrenheit */
return (((Tc*9)/5)+32);
end;
method init();
dcl double Degc DegF;
do DegC=0 to 30 by 15;
DegF=c2f (DegC) ;
PUT DegC= DegF=;
end;
end;
enddata; ds2_d03
run; -
quit;
§sas

13

11/1/2018

Basic DS2 Syntax

User-defined methods have the following features:

* can accept arguments

« canreturn a value

proc ds2;
data null ;

method c2f (double Tc)[returns doubled
/* Celsius to Fahrenheit */

return (((Tc*9)/5)+32);
end;
method init();

dcl double Degc DegF;

do DegC=0 to 30 by 15;

DegF=c2f (DegC) ;

PUT DegC= DegF=;
end;
end;

enddata;
run;

quit;

ds2_do3

Gsas

Basic DS2 Syntax

User-defined methods have the following features:

- execute when referenced

proc ds2;
data null ;

method c2f (double Tc) returns double;
/* Celsius to Fahrenheit */
return (((Tc*9)/5)+32);
end;
method init();
dcl double Degc DegF;
do DegC=0 to 30 by 15;
|DegF=c2f(DegC);|
PUT DegC= DegF=;
end;
end;

enddata;
run;
quit;

ds2_do3

Gsas

14

11/1/2018

Basic DS2 Syntax

User-defined methods have the following features:

- execute when referenced

- can be referenced
multiple times

proc ds2;
data null ;

method c2f (double Tc) returns double;

/* Celsius to Fahrenheit */
return (((Tc*9)/5)+32);

end;

method init();

1 le D DegF':
do DegC=0 to 30 by 15;
DegF=c2f (DegC) ;

PUT DegC= DegF=;
end;
end;
enddata;
run;

quit;

Partial SAS Log

degc=0 degf=32
degc=15 degf=59
degc=30 degf=86

ds2_do3

Gsas

Basic DS2 Syntax

Declarative statements must come before executable statements.

- Global declaratives affect the entire

program, and are placed before any method

definitions.

- Local declaratives affect only the method in
which they appear, and are placed before

the executable statements.

proc ds2;
data test;
dcl double MyVar;
retain MyVar O;
method run() ;
(dcl integer i;)|
set banks;

The DECALRE (DCL) statement is the only
permissible local declarative statement.

do i=1 to 3;

end;
end;
enddata;
run;

quit;

MyVar=10**j;

9sas,

15

11/1/2018

Basic DS2 Syntax

General form of the DECLARE statement:

DECLARE | DCL data-type variable-list
<HAVING LABEL 'string' | FORMAT | INFORMAT>;

Examples:

/* Declare three DOUBLE variables formatted dollari2.2*/
dcl double Var1 Var2 Var3 having format dollari2.2;

/* Declare a high-precision fixed point numeric variable */
dcl decimal(35,5) Vari;

/* Declare a fixed-width character variable labeled 'My Text'*/
dcl char(25) Var1 having label 'My Text';

Where a variable is declared in a DS2 program determines the variable’s scope.

G§sas
Basic DS2 Syntax
proc ds2; Undeclared Variables
data null ; + Variables not read in from a SET
z:thgguilimhg‘_’ar; statement and not referenced in a
do i=1 to 3 DECLARE statement are undeclared.
undeclared MyVar=10*%*i; « The numeric default type is DOUBLE.
variable i dPu"- MyVar=; - The character default type is CHAR.
end‘?n ’ « Undeclared variables produce
enddata; warnings in the SAS log.
run,
quit;
ds2_do4
Gsas

16

11/1/2018

Basic DS2 Syntax

proc ds2;
data null ;
dcl double MyVar;
method init();
dcl char(12) MyVar;
MyVar='Just Testing';
put MyVar=;
end;
method term() ;
do i=1 to 3;

/MyVar=10**i;

undeclared put MyVar=;

Variable Scope

« Undeclared variables have global
scope — they will appear in the
PDV

« They can be referenced in any
method in the program.

It is good practice to declare index
variables local to the method which
contains the DO loop.

end;
end;
enddata;
run; ds2_do4
quit;
G§sas
Basic DS2 Syntax
proc ds2; Variable Scope

data null ;
(dcl double MyVar;|
method init();

dcl char(12) MyVax;
MyVar='Just Testingy;
put MyVar=;

end;
method term() ;
do i=1 to 3;
MyVar=10%**j;
put MyVar=;
end;
end;
enddata;
run;

quit;

- Globally declared variables have
global scope — they will appear in
the PDV

« They can be referenced in any
method in the program.

MyVar declared as global
to the DATA program

MyVar referenced in the RUN method
ds2_do4

Gsas

17

11/1/2018

Basic DS2 Syntax

proc ds2;
data null ;
dcl double MyVar;
meth ini :
dcl char(12) MyVar;
MyVar='Just Testing)];

ut MyVar=;

end;
method term() ;
do i=1 to 3;
MyVar=10%**j;
put MyVar=;

Variable Scope
« Locally declared variables have

local scope and will not appearin
the PDV.

- They may only be referenced by

the method in which they were
declared.

Local MyVar can only be

end;
end; referenced within the INIT method

enddata;

— ds2_do4

quit;
Gsas

Basic DS2 Syntax
proc ds2; double-precision floating-point

dat : / .
dcl double MyVar;] numeric (8 bytes)

method init ()

(del char(12) MyVar;|=—
MyVar='Just Testing';
put MyVar=;
end;
method term() ;
do i=1 to 3;
MyVar=10**ji;
put MyVar=;
end;
end;
enddata;
run;

quit;

fixed-width character
variable (12 bytes)

Encapsulation of Local Variables

- Variables of different scope may
have the same name without

interfering with each other.
ds2_do4

Gsas

18

11/1/2018

Converting a Traditional DATA step to DS2

Selecting a method in DS2: proc ds2;
data null ;

data null ;

/* Section 1 */

if n_ =1 then do;
Text='**> Starting';
put Text;

end;

/* Section 2 */

set orion.banks end=last;

put _all ;

/* Section 3 */

if last then do;
Text='**> All done!';

put Text;
end;
run;
enddata;
run;
quit; ds2_d05s
I
9sas
Converting to DS2
Converting Section 1 proc ds2;
data null ;
data null ; /* Section 1 */
/* Section 1 */ method init () ;
B T A L a A Text='**> Starting';
Text='**> Starting'; put Text;
put Text; end;
end;
/* Section 2 */
set orion.banks end=last;
put _all ;
/* Section 3 */
if last then do;
Text='**> All done!';
put Text;
end;
run;
enddata;
run;
quit; ds2_do5
I
Gsas

19

11/1/2018

Converting to DS2

Converting Section 2

data null ;
/* Section 1 */
i Caao
Text='**> Starting';
put Text;
end;

/* Section 2 */
set orion.banks e st ;
put all ;

proc ds2;
data null ;
/* Section 1 */
method init();
Text='**> Starting';
put Text;
end;
/* Section 2 */
method run() ;
set orion.banks;

put _all ;
/* Section 3 */ end;
if last then do;
Text='**> All done!';
put Text;
end;
run;
enddata;
quit; ds2_d05
I
9sas
Converting to DS2
Converting Section 3 proc ds2;
data null ;
data null ; /* Section 1 */
/* Section 1 */ method init () ;
B S T 1A LA Text='**> Starting';
Text='**> Starting'; put Text;
put Text; end;
end; /* Section 2 */
/* Section 2 */ method run();
set orion.banks e st; set orion.banks;
put _all ; put _all ;
/* Section 3 */ end;
S iain o @l @mp— /* Section 3 */
Text='**> All done!'; method term() ;
put Text; Text='**> All done!';
end; put Text;
run; end;
enddata;
quit; ds2_d05
|
Gsas

20

11/1/2018

Converting an Existing Business Process to DS2

An existing DATA step program is used to calculate quarterly employee
charitable contributions, including Orion Star’s 25% increase.

To run this process as multi-threaded in Base SAS, do the following:
- convert the DATA step to DS2

- convert the DS2 DATA program to a DS2 thread

- execute the thread from a DS2 DATA program

9sas
Convert a DATA Step to a DS2 DATA Program
We'll use PROC DSTODS?2 for the initial conversion.
Note there are some issues to address in the converted program:
proc dstods2 in="ds2_d06b.sas" data NEW1;
out="ds2_d06c.sas"; keep EMPLOYEE ID QTR: TOTAL;
run; vararray double CONTRIB[*] QTR1-QTR4;
ds2_dO6a method run() ;
— set ORION.EMPLOYEE DONATIONS;
/* WHERE FIND (RECIPIENTS,'%') */;
data newl; TOTAL = 0.0;
array contrib[*] gtrl-qtr4; do Q = 1.0 to DIM(CONTRIB) ;
set orion.employee donations; TOTAL + CONTRIB[Q] * 1.25;
where find(recipients,'$'); end;
Total=0; 5
do g=1 to dim(contrib); _return:
Total+contrib[q] *1.25; .
end; end;
keep Employee ID qtr: Total; enddata;
run;
ds2_d06b ds2_do6c
PROC DSTODS2 converts what it can, and inserts the rest of the unconverted code as
comments as close to the original position as possible. For example, DS2 does not have a
WHERE statement so the DS2 DATA program includes that code as a comment. 9sas

21

11/1/2018

Convert a DATA Step to a DS2 DATA Program

First, let’s remove that unused _return label and add RUN

data newl;
array contrib[*] gtrl-qtr4;
set orion.employee_donations;
where find(recipients,'$');
Total=0;
do g=1 to dim(contrib);
Total+contrib[q] *1.25;
end;
keep Employee ID gtr: Total;
run; -

Now, what about that commented out
WHERE statement?

data NEW1;
keep EMPLOYEE_ID QTR: TOTAL;
vararray double CONTRIB[*] QTR1-QTR4;
method run() ;
set ORION.EMPLOYEE DONATIONS ;
/* WHERE FIND (RECIPIENTS,'%') */;
TOTAL = 0.0;
do Q = 1.0 to DIM(CONTRIB) ;
TOTAL + CONTRIB[Q] * 1.25;
end;
end;
enddata;
run;

Gsas
Convert a DATA Step to a DS2 DATA Program
Replace the data set name and WHERE comment with an SQL query
on the SET statement:
data newl; data NEW1;
array contrib[*] qtrl-gqtr4; keep EMPLOYEE ID QTR: TOTAL;
set orion.employee donations; vararray double CONTRIB[*] QTR1-QTR4;
where find(recipients,'$%'); method run();
Total=0; set {select *
do g=1 to dim(contrib); from ORION.EMPLOYEE DONATIONS
Total+contrib[q] *1.25; WHERE FIND (RECIPIENTS,'%’')};
end; TOTAL = 0.0;
keep Employee ID gtr: Total; do Q = 1.0 to DIM(CONTRIB) ;
run; - TOTAL + CONTRIB[Q] * 1.25;
end;
end;
enddata;
Functional! Now, how to address the two ran;
undeclared variables (TOTAL and Q)?
9sas

22

11/1/2018

Convert a DATA Step to a DS2 DATA Program

Let’s declare TOTAL as global (desired in the output) and Q as local to
the RUN method (not desired in the output):

data newl;
array contrib[*] gtrl-qtr4;
set orion.employee_donations;
where find(recipients,'$');
Total=0;
do g=1 to dim(contrib);
Total+contrib[q] *1.25;
end;
keep Employee ID gtr: Total;
run; -

Now that Q is local, do | really need that
KEEP statement?

data NEW1;
del double TOTAL;
keep EMPLOYEE ID QTR: TOTAL;
vararray double CONTRIB[*] QTR1-QTR4;
method run() ;
del integer gy
set {select *
from ORION.EMPLOYEE_ DONATIONS
WHERE FIND (RECIPIENTS,'$’)};
TOTAL = 0.0;
do Q = 1.0 to DIM(CONTRIB) ;
TOTAL + CONTRIB[Q] * 1.25;
end;
end;
enddata;
run;

Gsas

Convert a DATA Step to a DS2 DATA Program

If | leverage the SQL SELECT list, | won’t need the KEEP statement:

data newl;
array contrib[*] gtrl-qtr4;
set orion.employee_donations;
where find(recipients,'$');
Total=0;
do g=1 to dim(contrib);
Total+contrib[q] *1.25;
end;
keep Employee ID gtr: Total;
run; -

Ready to run!

data NEW1;
dcl double TOTAL;
vararray double CONTRIB[*] QTR1-QTR4;
method run() ;
dcl integer g
set {select EMPLOYEE ID,QTR1,QTR2,QTR3, QTR4
from ORION.EﬁPLOYEE_DONATIONS
WHERE FIND (RECIPIENTS,'$%’)};
TOTAL = 0.0;
do Q = 1.0 to DIM(CONTRIB) ;
TOTAL + CONTRIB[Q] * 1.25;
end;
end;
enddata;
run;

Gsas

23

11/1/2018

DS2 Thread Program Structure

« THREAD program block structure

Global

thread orion.mythread;

declarations

—dcl double gtrl-gqtr4;
vararry double contrib[4] gtrl-qtr4;

-method run|() ;

Local

dcl integer i;

Method | = do i=1 to dim(contrib) ;
put contrib[i]=; } lterative DO
end;
~end;
endthread;

set orion.employee donations;

declarations

9sas
Convert a DATA Program to a Thread Program

Now, convert the DATA statement to a THREAD statement.
proc ds2; proc ds2;
data new /overwrite=yes; thread work.th Donation/overwrite=yes;

vararray daouble contrib[*] qtr:; vararray double contrib[*] qtr:;

dcl double Total; dcl double Total;

method run() ; method run() ;

decl int q; decl int q;

set {select Employee_ID, qgtrl set {select Employee_ID, qgtrl

, gqtr2, qtr3, gtr4 , gtr2, qtr3, gqtr4
from orion.employee_donations from orion.employee_donations
where find(recipients,'%')>0}; where find(recipients,'%')>0};
Total=0; Total=0;
do g=1 to dim(contrib) ; do g=1 to dim(contrib) ;
Total+contrib[q]*1.25; Total+contrib[q]*1.25;

end; end;

end; end;
enddata; endthread;
run; run;
quit; quit;

ds2_d07
9sas

24

11/1/2018

Convert a DATA Program to a Thread Program

Convert an ENDDATA statement to an ENDTHREAD statement.

proc ds2;
data new /overwrite=yes;

vararray double contrib[*] qtr:;

dcl double Total;
method run() ;
decl int q;
set {select Employee_ID, qtrl
, qtr2, qtr3, gqtr4
from orion.employee_donations

where find(recipients,'%')>0};

Total=0;
do g=1 to dim(contrib) ;
Total+contrib[q]*1.25;
end;
end;
enddata;
run;
quit;

proc ds2;

thread work.th Donation/overwrite=yes;

vararray double contrib[*] qtr:;
dcl double Total;
method run() ;
decl int q;
set {select Employee_ID, qgtrl
, gqtr2, gqtr3, qtr4
from orion.employee_donations
where find(recipients,'%')>0};
Total=0;
do g=1 to dim(contrib);
Total+contrib[q]*1.25;
end;
end;
endthread;
run;
quit;

The THREAD program is executed to create a stored thread
for parallel execution in a subsequent DS2 DATA program.

ds2_d07

Gsas

Using DS2 Threads

To use a thread in a DS2 DATA program, perform the following tasks:

« Declare an instance of the thread.

« Invoke parallel thread execution with a SET FROM statement.

+ Use the THREADS= option to specify the number of threads to execute.

Output rows are returned to the DS2 DATA program.

« Processing of thread results by additional statements before or after the
SET FROM statement is single threaded.

« When you execute multiple threads, the order of rows that are returned

might vary from run to run.

Gsas

25

11/1/2018

Using DS2 Threads

The THREADS= option specifies the number of threads to execute in parallel.

- Specifying more threads than are available (over threading) will eventually
negatively affect performance.

| Without THREADS=, execution in Base SAS is single-threaded. |

Gsas

Using DS2 Threads

Execute the thread in a DATA statement.

proc ds2;
data new /overwrite=yes ;
(dcl thread work.th Donation th;|
method run() ;
set from th threads=4;
end;
enddata;
run;

quit;

Declare a thread instance.

ds2_do7

9sas,

26

11/1/2018

Using DS2 Threads

Execute the thread in a DATA statement.

proc ds2;
data new /overwrite=yes ;
dcl thread work.th Donation th;
method run() ;
[set from th]threads=4;
end;
enddata;
run;

quit;

The SET FROM statement executes the thread.

ds2_do7
9sas,
Using DS2 Threads
Execute the thread in a DATA statement.
proc ds2;
data new /overwrite=yes ;
dcl thread work.th Donation th;
method run () ;
set from th[threads=4;]
end;
enddata;
run;
quit;
Specify the number of threads. ds2 do7
9sas,

27

11/1/2018

Executing DS2 Threads in Base SAS

This demonstration illustrates Base SAS threaded
application processing in a DS2 DATA program.

ds2_d08a/ds2_d08b

Gsas

D

Questions? @

Gsas

Mastering the SAS
DS2 Procedure

Email: Mark.Jordan@sas.com v Dutaianghng Tecrius
Twitter: @SASJedi r. it
Blog: http://sasjedi.tips :
Author Page: http://support.sas.com/jordan

ooisi b

	A Brief Introduction to DS2
	Overview of DS2
	What Is DS2?
	What's Different About DS2?
	How Are DS2 Programs Created?
	When Should I Use DS2?
	Basic DS2 Syntax

	Converting a DATA step process to DS2
	Convert a DATA Step to a DS2 DATA Program
	Convert a DATA Program to a Thread Program
	Using DS2 Threads

	Author Contact Info

