
1 © 2016 Sentinel Coordinating Center. All Rights Reserved. 1

This PDF slide deck file includes the following:
1) All slides in landscape mode, one per page
2) Selected slides, repeated with accompanying additional information,
in portrait mode

Coding For Performance
Robert Rosofsky and Malcolm Rucker

Boston Area SAS Users Group
March 23, 2016

Sentinel Operations Center

Harvard Pilgrim Health Care Institute

1 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Coding For Performance

Robert Rosofsky and Malcolm Rucker
Boston Area SAS Users Group

March 23, 2016

Sentinel Operations Center
Harvard Pilgrim Health Care Institute

2 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Outline

 Introduction

 Core Concepts

 Benchmark Test Environments

 Individual Techniques

 Acknowledgements

 Questions

3 © 2016 Sentinel Coordinating Center. All Rights Reserved. 3

Introduction

4 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Why bother coding for performance?

Efficient coding may boost the “bottom line” by:

• Reducing time finding solutions to business problems

• Increasing quality of solutions found (e.g. more time for
in-depth and careful analysis)

• Reducing expenditures on hardware upgrades

5 © 2016 Sentinel Coordinating Center. All Rights Reserved.

When to code for performance?

 Many factors may influence the decision

• Execution times are unacceptably long

• Program runs multiple times

• The data volume is “large” compared to your system

• The data processing is “complex” or “has many steps”

• The additional benefits outweigh the additional costs

6 © 2016 Sentinel Coordinating Center. All Rights Reserved.

What are the costs?

Additional effort may be needed for:
• Learning
• Designing
• Coding
• Benchmarking Performance
• Quality Control

7 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Sentinel Data Partners
N=18 total

8 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Sentinel Data Partners (Continued)

• Over 213 million members throughout the network
• National health insurers & Health Maintenance

Organizations (HMOs)
• # of members, per DP, from <300,000 to >50 million
• Data time range for some DPs is as early as year 2000
• DP source data are extracted, transformed, and loaded

into the Sentinel Common Data Model format (SCDM)
as SAS tables queried by distributed SAS programs

• SAS installations at DPs range from SAS 9.3 - SAS 9.4

9 © 2016 Sentinel Coordinating Center. All Rights Reserved.

1- Query (an executable program) is submitted by Coordinating Center to the Portal
2- Data Partners retrieve the query
3- Data partners review query and perform analysis locally by executing the distributed program
4- Data partners review results
5- Data partners return results to the Portal

Sentinel Distributed Data Network

Sentinel Portal 2

1

5

4 3

 Data Partner Firewall / Policies

Review & Run Query

FDA Operations Center

Local Datasets

Local Datasets
Local Datasets

Local Datasets

Review & Return Results

10 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Technical Challenges for Sentinel Distributed
Data Network

 Over time, we expect even heavier workloads across
the Sentinel distributed data network driven by
increasing levels of

• Data volumes

• Query volumes

• Query complexity

• Complex analytic techniques and event definitions

• # members, # years, # of data attributes collected

• # of requests, # of query scenarios per request

11 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Technical Challenges (Continued)

 Traditional coding approaches do not account for the
extreme variation found across the network in

‒ Data volumes

‒ System capabilities

‒ System loads

 As a result, we have sometimes found that a query
performs well at some sites while at other sites it
fails (e.g. runs out of disk space or RAM) or runs for
days (e.g. we have seen queries take up to 2 ½
weeks)

12 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Sentinel Response to Technical Challenges

 The Sentinel Operations Center (SOC) launched an
initiative in 2015 to explore alternative methods for
storing and querying “Big Data”

 With the help of our Data Partners, we sought to find
solutions that significantly boost performance while
using available resources more efficiently

13 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Resource Opportunities & Constraints

DATA
Volume,

Complexity,
Quality,

Standardization

LABOR
Quality & Quantity

ALGORITHMS
Business/Analytic
& Programming

COMPUTER
SYSTEMS

Hardware,
Operating System,

SAS

While computer systems are
expensive to upgrade …

Great opportunities
exist for restructuring

code!

14 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Use-Case: Summary Tables Creation

 The summary tables creation package is run after
each data refresh at a Data Partner site

 All diagnosis, drug, and procedure code events are
extracted (from typically very large tables),
transformed (in multiple ways), and aggregated
(multiple times)

 The result are summary tables of prevalent codes
and incident codes that are stratified by year, age-
group, sex, encounter type

15 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Use-Case: ST Creation (Continued)

 While able to support very quick feasibility analysis
(e.g. for sample size estimates), creating the
summary tables themselves takes a very long time

 In the Fall and Winter of 2015, we completely
rewrote the summary tables creation package as a
use-case for alternative approaches to “Big Data”

16 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Use-Case: ST Creation (Continued)

PatID VisitDate DX_Code

2213 2/12/2006 250.0

6235 6/7/2007 300.5

2 Billion Rows

8089 8/11/2007 569.6

9292 9/17/2008 655.8

Summarize multiple detail tables (such as these)…

To

something

like …

AgeGroup Sex Dx_Code Descr Year # Patients # Events

0-1 M 250 Diabetes 2011 9,456 15,760

2-4 F 493 Asthma 2011 10,554 15,077

5-9 M 410 Acute myocardial infarction 2011 15,800 36,867

10-14 F V22 Normal pregnancy 2011 7,400 19,733

15-18 M 581 Nephrotic syndrome 2011 9,600 67,200

19-21 F 250 Diabetes 2012 33,400 72,367

22-44 M 493 Asthma 2012 49,000 98,000

45-64 F 410 Acute myocardial infarction 2012 25,900 55,038

0-1 M 581 Nephrotic syndrome 2012 12,200 73,200

2-4 F 410 Acute myocardial infarction 2015 84,200 372,886

PatID Sex Birth_Date

2213 M 4/23/1955

6235 F 6/22/1960

Millions of Rows

8089 M 11/9/1990

9292 F 7/15/1997

PatID Enr_Start Enr_End

2213 1/1/2010 12/31/2010

2213 7/1/2011 12/31/2014

Millions of Rows

8089 5/1/2014 11/9/2014

9292 12/1/2014 6/30/2015

Diagnoses Demographics Enrollment

17 © 2016 Sentinel Coordinating Center. All Rights Reserved.

ST Creation - Results

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14

v1_runtime 3:30:00 29:22:00 16:31:00 3:54:00 26:39:00 13:39:00 8:11:00 52:40:00 105:42:0 108:30:0 122:41:0 123:27:0 90:40:00

v2_runtime 0:28:41 0:23:34 3:05:24 1:13:41 0:54:23 2:53:53 1:43:47 1:12:28 6:24:18 16:22:38 14:17:04 18:04:26 13:16:46 12:34:55

0:00:00

24:00:00

48:00:00

72:00:00

96:00:00

120:00:00

144:00:00

Data Partner Site ID (Ranked Smallest to Largest in terms of data storage*)

Summary Table Creation Runtimes - V1 versus V2 (hh:mm:ss)

v1_runtime v2_runtime

*Footnote: Rankings are based on gigabytes of computer storage. Storage can be impacted by many things such as years of data, type of data, type of enrollment, storage efficiency, # patients, etc.,

18 © 2016 Sentinel Coordinating Center. All Rights Reserved.

ST Creation - Results (Continued)

7.32

74.76

13.45

4.31

9.19 7.89 6.78
8.22

6.45 7.6 6.79
9.3

7.21

0

10

20

30

40

50

60

70

80

S01 S02 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14

Data Partner Site ID (Ranked Smallest to Largest in terms of data storage*)

Performance Gain Ratios (V1 Runtime divided by V2 Runtime)

*Footnote: Rankings are based on gigabytes of computer storage. Storage can be impacted by many things such as years of data, type of data, type of enrollment, storage efficiency, # patients, etc.,

19 © 2016 Sentinel Coordinating Center. All Rights Reserved.

How did we do it?

 We redesigned the code to be “smarter” about

 Computer system capabilities in general

Data volume differences in particular

20 © 2016 Sentinel Coordinating Center. All Rights Reserved. 20

Core Concepts

21 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Computer System Performance

 A well functioning computer system can process jobs
without resource bottlenecks or resource exhaustion

 90% of the performance problems reported to the
SAS Institute are due to improperly tuned or
improperly sized systems

http://blogs.sas.com/content/sgf/2015/11/18/tips-to-keep-your-sas-system-humming/
http://support.sas.com/kb/42/197.html

http://blogs.sas.com/content/sgf/2015/11/18/tips-to-keep-your-sas-system-humming/
http://blogs.sas.com/content/sgf/2015/11/18/tips-to-keep-your-sas-system-humming/
http://blogs.sas.com/content/sgf/2015/11/18/tips-to-keep-your-sas-system-humming/
http://blogs.sas.com/content/sgf/2015/11/18/tips-to-keep-your-sas-system-humming/
http://blogs.sas.com/content/sgf/2015/11/18/tips-to-keep-your-sas-system-humming/
http://blogs.sas.com/content/sgf/2015/11/18/tips-to-keep-your-sas-system-humming/
http://blogs.sas.com/content/sgf/2015/11/18/tips-to-keep-your-sas-system-humming/
http://blogs.sas.com/content/sgf/2015/11/18/tips-to-keep-your-sas-system-humming/
http://blogs.sas.com/content/sgf/2015/11/18/tips-to-keep-your-sas-system-humming/
http://blogs.sas.com/content/sgf/2015/11/18/tips-to-keep-your-sas-system-humming/
http://blogs.sas.com/content/sgf/2015/11/18/tips-to-keep-your-sas-system-humming/
http://blogs.sas.com/content/sgf/2015/11/18/tips-to-keep-your-sas-system-humming/
http://blogs.sas.com/content/sgf/2015/11/18/tips-to-keep-your-sas-system-humming/
http://support.sas.com/kb/42/197.html

22 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Optimizing the SAS Configuration File
 Option settings recommended for SAS 9.2/9.3

‒ MEMSIZE 2G Limit on virtual memory available during a session

‒ SORTSIZE 1G Limit on memory available for sort utility files

‒ CPUCOUNT 4 CPU “cores” available for multi-threaded procedures

‒ BUFSIZE 64K Page size used for SAS files (set when file is created)

‒ UBUFSIZE 64K “ “ SAS Utility files

‒ IBUFSIZE 32767 “ “ SAS Index files

‒ BUFNO 10 Pages of data processed during a single IO operation

‒ UBUFNO 10 “ “ SAS Utility files

‒ IBUFNO 10 “ “ SAS Index files

 Location of Configuration File
‒ Windows OS: !SASROOT\sasv9.cfg

‒ UNIX OS: !SASROOT/sasv9_local.cfg

 Limit on virtual memory available for SAS job/step

 Limit on memory for sort-related utility files

 CPU “cores” available for multi-threaded procedures

 Page size used for SAS files (set when file is created)

 “ “ Utility files (used by multi-threaded procs)

 “ “ Index files
 Pages of data processed during a single IO operation

 “ “ Utility files

 “ “ Index files

http://support.sas.com/kb/46/954.html
http://support.sas.com/resources/papers/Flexibility_by_Design.pdf

http://support.sas.com/kb/46/954.html
http://support.sas.com/resources/papers/Flexibility_by_Design.pdf

23 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Optimizing OS & Hardware Configuration
Operation System (e.g. Windows, UNIX, etc.):

 Tuning guidelines are OS specific

CPU Cores:

 Current generation processing cores

Physical Memory (RAM):

 >= 8GB RAM/core

Virtual Memory (Paging File):

 1.5-2.0 x physical RAM

IO Subsystem:

 Overall throughput: >=100-125 MB/sec/core

 SAS WORK & UTILOC: >= 100 MB/sec/core

 SAS permanent data: >= 50-75 MB/sec/core

 Use multiple, striped file systems if possible!

OS CPU

Physical
Memory

(RAM)

Virtual
Memory

(Paging File)

IO Subsystem

http://blogs.sas.com/content/sgf/2014/10/08/configuring-sas-what-to-know-before-you-install/

http://blogs.sas.com/content/sgf/2014/10/08/configuring-sas-what-to-know-before-you-install/
http://blogs.sas.com/content/sgf/2014/10/08/configuring-sas-what-to-know-before-you-install/
http://blogs.sas.com/content/sgf/2014/10/08/configuring-sas-what-to-know-before-you-install/
http://blogs.sas.com/content/sgf/2014/10/08/configuring-sas-what-to-know-before-you-install/
http://blogs.sas.com/content/sgf/2014/10/08/configuring-sas-what-to-know-before-you-install/
http://blogs.sas.com/content/sgf/2014/10/08/configuring-sas-what-to-know-before-you-install/
http://blogs.sas.com/content/sgf/2014/10/08/configuring-sas-what-to-know-before-you-install/
http://blogs.sas.com/content/sgf/2014/10/08/configuring-sas-what-to-know-before-you-install/
http://blogs.sas.com/content/sgf/2014/10/08/configuring-sas-what-to-know-before-you-install/
http://blogs.sas.com/content/sgf/2014/10/08/configuring-sas-what-to-know-before-you-install/
http://blogs.sas.com/content/sgf/2014/10/08/configuring-sas-what-to-know-before-you-install/
http://blogs.sas.com/content/sgf/2014/10/08/configuring-sas-what-to-know-before-you-install/
http://blogs.sas.com/content/sgf/2014/10/08/configuring-sas-what-to-know-before-you-install/
http://blogs.sas.com/content/sgf/2014/10/08/configuring-sas-what-to-know-before-you-install/
http://blogs.sas.com/content/sgf/2014/10/08/configuring-sas-what-to-know-before-you-install/

24 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Optimal Hardware Configurations Cost $$$

Optimally, a workstation with 4 cores might have:

‒ >= 32GB RAM (8GB RAM/core x 4 cores)

‒ >= 40-44 striped HDD for 3 file systems

• >= 16 HDD striped for WORK (4 HDD/core x 4 core)

• >= 16 HDD striped for UTILITY (4 HDD/core x 4 core)

• >= 8-12 HDD striped for permanent SASDATA (2-3 HDD/core
x 4 core)

 In reality, a workstation with 4 cores might have far less:

‒ 12 GB RAM (3GB RAM/core)

‒ 3 HDD non-striped (each HDD has ~25 MB/sec IO, which is
~ 4x slower/core than optimal)

25 © 2016 Sentinel Coordinating Center. All Rights Reserved.

IO Bottlenecks …

 When performance problems occur, insufficient IO
throughput is often the diagnosis

 The SAS Institute provides many great resources to
help you tune and right-size your system for better IO
throughput …

 We will show you coding techniques that reduce IO
requests

http://support.sas.com/kb/53/874.html

http://support.sas.com/kb/53/874.html

26 © 2016 Sentinel Coordinating Center. All Rights Reserved.

What is “Good” IO throughput?
 “Good” throughput occurs when the CPU are not kept waiting for IO

 The ratio of Real time to Total CPU time (user + system) will be close to 1

 Use FULLSTIMER option to report on Real time and Total CPU time

 real time 4:25.56
 user cpu time 5:36.14
 system cpu time 25.77 seconds
 memory 3354692.78k
 OS Memory 3622096.00k
 Timestamp 02/05/2016 11:02:30 PM
 Step Count 2142 Switch Count 0
 Page Faults 0
 Page Reclaims 2363082
 Page Swaps 0
 Voluntary Context Switches 693505
 Involuntary Context Switches 622
 Block Input Operations 1384008
 Block Output Operations 29158608

http://support.sas.com/kb/51/660.html

http://support.sas.com/rnd/scalability/papers/solve_perf.pdf

http://support.sas.com/kb/51/660.html
http://support.sas.com/rnd/scalability/papers/solve_perf.pdf
http://support.sas.com/kb/51/660.html

27 © 2016 Sentinel Coordinating Center. All Rights Reserved.

 SAS Code Efficiency – Efficient vs. Inefficient

 Dataset Sizes – Small (< 2 GB) vs. Large

 Physical Memory (RAM) – Abundant vs. Limited

 Multi-Threaded Steps – Few vs. Many

 Partitioned Parallel Processing – Yes vs. No

 Competing Jobs – Few vs. Many

 Even with a “light-weight” IO subsystem, it is still possible
to squeeze out “good” IO throughput

Why does IO throughput vary so much across
SAS steps/jobs (on the same system)?

28 © 2016 Sentinel Coordinating Center. All Rights Reserved. 28

Benchmark Test Environments

29 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Benchmarking Environment #1

PC:
• 2 HDD; one with SAS installed, one devoted to WORK space
• 4Gbytes RAM
• 2-core CPU
• Windows 7

Benchmarking Environment #2
PC:

• 3 HDD; one for SAS, one for WORK, one for SASDATA
• 12Gbytes RAM
• 4-core CPU
• Windows 7

30 © 2016 Sentinel Coordinating Center. All Rights Reserved. 30

Individual Techniques

31 © 2016 Sentinel Coordinating Center. All Rights Reserved.

 Ordered here by skill/effort required

1) Limit variables/rows to a minimum

2) Reduce variable lengths to a minimum

3) List GROUP BY vars from most # of distinct values to least

4) When a PROC/DATA step reads and writes a “large”
amount of data, turn that step into a view

5) Aggressively delete temporary files

6) Use in-memory table lookup techniques (difficulty varies)

7) Replace long values with short surrogate key values

8) Use horizontal table partitioning for scalability

Individual Techniques

32 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Limit Variables/Rows to a Minimum

• Read and write only:
• The variables you need
• The rows you need

This reduces the number of IO requests and saves
storage space

33 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Read and Write only the Variables you Need

• Judiciously use KEEP and DROP statements throughout
your DATA step processing

Data Many_Variables2;
Set Many_Variables1;
... Processing ...

Run;
Gets replaced with…

Data Many_Variables2(keep= x1 x2...xn);
Set Many_Variables1(drop= var1 var2...varn);
... Processing ...

Run;

34 © 2016 Sentinel Coordinating Center. All Rights Reserved.

• Judiciously use IF and WHERE expressions to include only
those observations absolutely required

Data Some_Rows;
Set LargeDataset;
WHERE age between 0 and 18;
... Processing ...

Run;

Or…

Data Some_Rows;
Set Many_Variables1;
... Processing ...
IF NewVar in (‘AB’, ‘CD’, ‘ZX’);

Run;

Read and Write only the Rows you Need

35 © 2016 Sentinel Coordinating Center. All Rights Reserved.

LENGTHs of Variables
• SAS defaults the number of bytes in storage to contain a value
• Fewer bytes result in faster performance
• Separate default lengths for character vs. numerics

o Numerics: Always defaults to 8 bytes
o Character: Defaults to 1st knowledge of the length of the

values to be stored in a DATA step

What is the length for variable Description?

Data KnowLength;
 set Whatever;
 if Y1 < 70 then Description = “123456789”;
 else if 71 <= Y1 <= 151 then Description = “123456”;
 else Description = “123”;
Run;

9 bytes

36 © 2016 Sentinel Coordinating Center. All Rights Reserved.

LENGTHs of Variables (Continued)
Storage lengths for numerics in UNIX and Windows

Length in Bytes Largest Integer Represented Exactly

3 8,192

4 2,097,152

5 536,870,912

6 137,438,953,472

7 35,184,372,088,832

8 9,007,199,254,740,992

• Dates: An integer representing the # of days since 1/1/1960
o Today’s date (March 23, 2016) = 20,536
o So we need only 4 bytes instead of 8 (50% reduction)

• We won’t need to go to 5 bytes until October 24, 7701

37 © 2016 Sentinel Coordinating Center. All Rights Reserved.

LENGTHs of Variables (Continued)
Comparisons*
- One dataset with 2 date variables set to 8 bytes each
- One dataset with 2 date variables set to 4 bytes each

Module

Time
(8 bytes)

Time
(4 bytes)

%
Difference

Proc Freq (1 date variable) 0:09:55 0:08:25 15.2%
SQL Summarization (1 date variable) 0:26:33 0:24:31 7.7%

- Syntax: LENGTH VariableName length;
 e.g. LENGTH Boolean 3 LastName $25
 BirthDate AdmitDate DischargeDate 4;

* Benchmarking environment #1 - using encounters dataset (680 million rows, 60GB)

38 © 2016 Sentinel Coordinating Center. All Rights Reserved.

 Order GROUP BY variables (from left to right) in the
from highest to the lowest number of distinct values

 Example – Group procedure events by 6 variables
ordered two ways (low to high vs. high low):

‒ Low-High: EncType, PX_CodeType, PX, Provider, PatId, EncounterID

‒ High-Low: EncounterID, PatId, Provider, PX, PX_CodeType, EncType

SQL GROUP BY - Variable Order

39 © 2016 Sentinel Coordinating Center. All Rights Reserved.

 Comparison*

SQL GROUP BY - Variable Order (Continued)

Method Real
Time

Total CPU Time

Group by: LOW-HIGH 66:57:01 35:34:00

Group by: HIGH-LOW 62:45.49 27:07:12

% Difference 6.7% 29.6%

* Benchmarking environment #2 - using procedures dataset (1.2 billon rows, 100GB)

 Multi-threaded procedures may hide inefficient coding practices
 “Very Large” datasets (e.g. >= 100GB) are difficult to cache effectively
which often leads to “Poor” IO throughput

40 © 2016 Sentinel Coordinating Center. All Rights Reserved.

In-Memory Table Lookups
 Use Formats/Hash Tables to help

• Reduce IO Requests (by avoiding data sorts)
• Reduce in memory calculations (by using fewer statements)
• Improve Modularization (by removing data from code)

/* “Get your data out of your code!” (… for improved modularization …) */

Data OutputDataSet;

 Set InputDataSet;

 If code=”123” then Result=”This”;

 Else if code=”369” then Result=”Is”;

 Else if code=”159” then Result=”Very”;

 Else if code=”753” then Result=”Tedious”;

 Else if code=”456” then Result=”Agree?”;
 …
Run;

Gets replaced with…

41 © 2016 Sentinel Coordinating Center. All Rights Reserved.

… with a much better technique

/* Example of Creating a SAS Format */

Proc format;

 Value $CodeToWord

”123”=”This”

”369”=”Is”

”159”=”Very”

”753”=”Tedious”

“456”=“Agree?”

… ;

Run;

/* Example of Using a SAS Format for In-Memory Table Lookups */

Data OutputDataSet;

 Set InputDataSet;

 Result = put(code, $CodeToWord.);

Run;

In-Memory Table Lookups (Continued)

42 © 2016 Sentinel Coordinating Center. All Rights Reserved.

In-Memory Table Lookups (Continued)

Comparisons*
- Hardcoded IF-THEN-ELSE statements
- PROC FORMAT and PUT() function statement

Time
(IF-THEN-ELSE)

Time
(PROC FORMAT and PUT())

%
Difference

1:03:09 0:30:27 51.8%

* Benchmarking environment #1 – using encounters dataset (680 million rows, 60GB)

43 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Surrogate Keys for Long Values

• Long ID variables (10+ characters) can be replaced with numeric
keys of many fewer bytes

• Long descriptions can be replaced with numeric keys of many
fewer bytes

Examples
• A patient ID of 30 characters can be replaced with a numeric

surrogate of only 4-5 bytes
o With 300 million people in US, only 5 bytes are needed
o You are likely to have fewer persons to manage!

• Long descriptions can be replaced with numeric keys of many
fewer bytes
o Drug description of 35 characters can be replaced with 3-4

bytes

44 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Surrogate Keys for Long Values
(Continued)

Managing surrogate keys requires the following overhead:
1. Discover the number of unique values
2. Determine # of bytes for storing each variable
3. Map the unique values to surrogate keys (1+)
4. Apply the surrogate keys to source rows
5. Manipulate (e.g., filtering, summarization) datasets containing

surrogate keys
6. Reapply original values

45 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Using a table of 102mil outpatient drug claims
1. Discover the number of unique values = 43,331
2. Determine # of bytes for storing each variable = 4 bytes
3. Map the unique values to surrogate keys (1+)
4. Apply the surrogate keys to source rows
5. Manipulate (e.g., filtering, summarization) datasets containing

surrogate keys
6. Reapply original values

Depending on your application, the overhead may be worth the

effort

Surrogate Keys for Long Values
(Continued)

46 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Surrogate Keys for (Enrollment) Status Flags

2004 2005 2006 2007 2008 2009

Y Y N N Y Y

2004 2005 2006 2007 2008 2009

1 1 0 0 1 1

110011

51

Binary number

Decimal number

Only 3 bytes needed (Windows and UNIX)

• For 15 years, maximum decimal value = 32,767
• Needs only 4 bytes, savings of 9 bytes, = 60%

47 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Surrogate Keys for Status Flags
 Compare use of two in-memory hash table lookup

approaches, linking enrollment status flags for 5 million
patients onto 320 million event records:*
• “Separate status flags approach” (for speed)
• “Binary decimal approach”
 (for packing more information into less memory)

Module

Time
(6 separate flags)

Time
(Disassemble

Decimal Value)
%

Diff
Hash Lookup: Status flags and event
records 0:07:22 0:07:46 5.3%

* Benchmarking environment #1

48 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Horizontal Table Partitioning
PatID VisitDate DX_Code

2213 2/12/2015 250.0

3338 3/18/2015 154

4152 4/16/2015 154.55

5344 5/26/2015 216.6

6235 6/7/2015 300.5

7218 7/2/2015 395.2

8089 8/11/2015 569.6

9292 9/17/2015 655.8

10115 10/18/2015 036.43

11264 11/14/2015 V90.32

12158 12/27/2014 E013.1

13329 1/4/2015 506.1

“Billions” of Rows
14177 2/9/2015 853.05

15198 3/19/2015 V65

16126 4/18/2015 747.5

17266 5/8/2015 879.5

18317 6/14/2015 844

19179 7/6/2015 V90.32

20263 8/26/2015 923

21322 9/17/2015 506.1

22072 10/22/2015 671.13

23310 11/25/2015 967.9

24182 12/9/2014 378.2

25338 1/4/2015 719.82

PatID VisitDate DX_Code

2213 2/12/2015 250.0

3338 3/18/2015 154

4152 4/16/2015 154.55

5344 5/26/2015 216.6

“Millions” of Rows

14177 2/9/2015 853.05

PatID VisitDate DX_Code

6235 6/7/2015 300.5

7218 7/2/2015 395.2

8089 8/11/2015 569.6

9292 9/17/2015 655.8

“Millions” of Rows

15198 3/19/2015 V65

PatID VisitDate DX_Code

10115 10/18/2015 036.43

11264 11/14/2015 V90.32

12158 12/27/2014 E013.1

13329 1/4/2015 506.1

“Millions” of Rows

16126 4/18/2015 747.5

…and many more

49 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Horizontal Table Partitioning

Partitioning can be by:
 Random Selection
 Strata (e.g., Year, Region, Department, Category)
 Entity (e.g., Patient, Customer)

For the summary table code, we partitioned by:
 Year prevalent summary tables
 Patients incident summary tables

 Analytic requirements drive partitioning strategy
 Data volumes (ideally) drive how many partitions to create

50 © 2016 Sentinel Coordinating Center. All Rights Reserved.

 Method 1 – Sequential Processing

‒ Process partitions one at time through a set of steps

‒ Improves performance through efficient resource use

 Method 2 – Parallel Processing

‒ Process multiple partitions concurrently through a set of
steps

‒ Improves performance through efficient use of more
resources (e.g. more CPU, RAM, and IO resources are
concurrently used in order to reduce real times)

‒ More flexible of the two methods (but harder to do)

HT Partitioning - Processing Methods

51 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Horizontal Table Partitioning Results

Module Process

Average
Time

Summarize Data
(Full File)

PROC SQL summarization
0:14:04

Summarize Data
(Yearly Partitions)

• Data step to partition (6 years)
• PROC SQL summarization each year
• Data step to concatenate results 0:07:58

Benefit 43.8%

Table of 201 million rows
Summarizations by Year*

* Benchmarking environment #1

52 © 2016 Sentinel Coordinating Center. All Rights Reserved.

 In general, splitting tables horizontally and looping
through the partitions allows us to

‒ Regulate the maximum amount of resources consumed at
every moment (i.e. we load balance within the job)

‒ Tilt resource usage favorably (i.e. we effectively exploit the
available RAM and CPUs and we minimize IO requests)

‒ Improve the scalability of our solutions

HT Partitioning – Why it Works

53 © 2016 Sentinel Coordinating Center. All Rights Reserved.

 More specifically, we greatly improve the odds that

‒ System resources (e.g. RAM & disk space) are never
exhausted

‒ Files are effectively cached in RAM (reduces IO, exploits
RAM & CPU)

‒ PROCs that sort/link/aggregate data are able to load entire
files into RAM (reduces IO, exploits RAM & CPU)

‒ Multi-threaded steps are able to fetch data pages directly
from the cache (reduces IO, fully exploits RAM & CPU)

HT Partitioning – Why it Works (Continued)

54 © 2016 Sentinel Coordinating Center. All Rights Reserved. 54

Acknowledgements

55 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Contributing Partners

 Our early explorations into alternative approaches
greatly benefited from the expertise and helpfulness
of our Sentinel partners

‒ Ron Johnson (Group Health)

‒ Jack Hamilton (Kaiser P. of Northern California)

‒ Steve Roloff, Eva Ng (Optum)

 These individuals (and organizations) provided in-
depth feedback, troubleshooting, coding support,
and benchmarking results, for which we are
extremely grateful

56 © 2016 Sentinel Coordinating Center. All Rights Reserved.

Talking Points

I love this chart because it shows that every site, even the large sites, will be able to
produce results in under 24 hours. Most sites will be able submit queries in the
morning and check results in the afternoon, while the largest sites can submit queries
in the morning and check results the next morning – this is fantastic!

17

Talking Points

I love this chart because it shows (if you ignore the attention seeking outlier)
remarkable consistency in performance improvement gains across all sites regardless of
their size. This speaks volumes to the scalability of the approach.

18

http://support.sas.com/kb/46/954.html

http://support.sas.com/resources/papers/Flexibility_by_Design.pdf

Talking Points

• MEMSIZE must be set when the SAS session is invoked, the other options may be set
in the SAS code using an options statement

•Out of the box configuration SAS option settings are conservative (often too
conservative) which led to the above recommendations from SAS Institute, but they
should still be benchmarked.

• Starting with version 9.4, the default SAS option settings are less conservative, but
they should still be evaluated/benchmarked.

• Conservative option settings may sometimes hamper job performance but the upside
is that jobs are less likely to exhaust resources.

22

Talking Points

• Optimal configurations use three types of file systems – file system(s) dedicated to
SAS WORK, file system(s) dedicated to SAS Utility files created by multi-threaded
procedures, and file system(s) dedicated to permanent SASDATA

• A file system with 4 striped HDD yields ~ 100 MB/sec IO throughput

Definitions

• A “core” is an independent processing unit that execute instructions.
(https://en.wikipedia.org/wiki/Multi-core_processor).

• Data striping is a method of improving IO by spreading data segments across multiple
devices that can be accessed concurrently (https://en.wikipedia.org/wiki/Data_striping)

http://blogs.sas.com/content/sgf/2014/10/08/configuring-sas-what-to-know-before-
you-install/

23

Talking Points

• Fewer devices are needed if SSD are used instead of HDD

• Optimally, 3 types of file systems are recommended, but 2 types of file systems (one
for WORK, another for permanent SASDATA) may be adequate in which case the
requirements would drop down to 24-28 striped HDD

• A striped SASDATA file system is often set up to trade some performance for a chance
of recovery from a device failure

24

Talking Points

• A ratio significantly less than 1 indicates “Really Good “ IO throughput.

• For example, the FULLSTIMER screen shot shows a SAS step where Real time is less than
Total CPU time. This happened because the step used multiple CPU threads to read
multiple chunks of data in parallel, which increased Total CPU time but reduced Real time.

Definitions

• Page Faults: Number of virtual memory page faults that occurred for this SAS job/step
which required an IO operation to retrieve pages from disk

• Page Reclaims: Number of virtual memory pages retrieved for this SAS job/step from the
page list awaiting reallocation (i.e. these pages are still in the memory cache and do not
require and IO operation)

• Page Swaps: The number of times a process was swapped out of main memory.
Consistently high values are evidence that memory resources should be looked into.

• Involuntary Context Switches: The number of times a process releases its time slice
involuntarily. A consistently high values are evidence that the CPU should be looked into.

• Block Input Operations: The number of pages read for this SAS job/step that required an IO
operation

• Block Output Operations: The number of pages written for this SAS job/step that required
an IO operation

26

Talking Points

• Multi-threaded steps: Many SAS procedures can employ multiple reader threads to
process data in parallel (e.g. SQL, SORT, MEANS/SUMMARY, etc.)

• Partitioned Parallel Processing: Multiple asynchronous SAS sessions are spawned,
each processing separate partitions of data in parallel. This can be accomplished
through the MP Connect SAS Module, or by using the SYSTASK and WAITFOR
commands in Base SAS

27

Method 2 - Parallel Processing: Multiple asynchronous SAS sessions are spawned, with
each SAS session processing separate partitions of data in parallel. This can be
accomplished either through the MP Connect SAS Module, or by using the SYSTASK and
WAITFOR commands in Base SAS.

50

